
Eur. Phys. J. D 45, 369–389 (2007)
DOI: 10.1140/epjd/e2007-00251-1 THE EUROPEAN

PHYSICAL JOURNAL D

Non-equilibrium electron and phonon dynamics in metals
under femtosecond laser pulses

L.D. Pietanza1,a, G. Colonna1, S. Longo1,2, and M. Capitelli1,2

1 Istituto di Metodologie Inorganiche e dei Plasmi (IMIP), CNR, sez. Bari, via Amendola 122/D, 70126 Bari, Italy
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Abstract. Different models for relaxation dynamics of electrons and phonons in a thin metal film heated by
femto-pico second laser pulses have been discussed. The traditional two-temperature approach reveals to be
inaccurate due to deviations of electrons and phonons from Fermi-Dirac and Bose-Einstein distributions,
respectively. Coupled Boltzmann kinetic equations have been adapted for the quantum statistics to study
the energy distribution of electrons and phonons in metals. Theoretical details have been discussed and a
new solution method has been proposed overcoming numerical problems and improving stability, allowing
the study of the dynamics until the complete relaxation. Numerical results have been compared with
photoemission spectroscopy experimental data.

PACS. 47.70.Nd Nonequilibrium gas dynamics – 52.38.Mf Laser ablation – 07.05.Tp Computer modeling
and simulation

1 Introduction

Laser interaction with metallic surfaces is a topic of large
interest for basic and applied research. A laser pulse of
moderate fluence focused on the surface of a metallic tar-
get is absorbed by the electrons in the conduction band,
leaving the lattice unperturbed due to its heat capacity,
generating a non equilibrium condition in the solid. Tran-
sition to equilibrium is governed essentially by two pro-
cesses: electron-electron (e−e) and electron-phonon (e−p)
collisions. The first process forces the electron distribution
towards the Fermi-Dirac distribution, without changing
the overall amount of electron energy. This process, known
as “internal thermalization”, occurs on a time scale of hun-
dreds of femtoseconds. On the other hand, e− p collisions
exchange energy between the perturbed electrons and the
lattice. The excess of electron energy due to the laser ab-
sorption is thus transferred to the lattice, ending in local
equilibrium in the metal. This process, called “external
thermalization”, has characteristic times that range from
hundreds of femtoseconds to picoseconds.

The laser-induced perturbation and the material re-
sponse strongly depend on the laser pulse duration in com-
parison with the characteristic collisional time scales. For a
nanosecond laser pulse, local equilibrium is achieved dur-
ing the laser pulse and the metal thermodynamic state
is described by one temperature [1]. With a picosecond
laser, before the pulse end, the electron gas achieves inter-
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nal thermalization while the electron-lattice system is still
far from equilibrium. In these conditions the classical two-
temperature model (TTM) [2,3] is used, which assigns a
different temperature to electrons (Te) and phonons (TL),
whose time evolution is governed by the e − p energy
exchange. The energy exchange rate is assumed propor-
tional to the temperature difference and to a coupling
constant [2,3].

When a femtosecond laser pulse is used, e − e colli-
sions are not fast enough to thermalize the electron gas
during the laser pulse, and electron distribution depar-
tures from non-equilibrium conditions are maintained up
to some hundreds of femtoseconds. In this condition, the
TTM approach is inadequate and microscopic kinetic ap-
proach should be used. The Boltzmann equation should
be solved for the electron and phonon gas, calculating the
energy distribution for the two systems.

In this work, electron and phonon relaxation dynam-
ics, after femtosecond laser perturbation, has been inves-
tigated through the numerical solution of the system of
electron and phonon Boltzmann equations. In this way,
the simultaneous time evolution of electron and phonon
distributions, during and after the laser perturbation, can
be calculated, emphasising non-equilibrium effects.

Several theoretical works have been devoted to this
problem [4–11], using different approaches in considering
laser absorption and in calculating collisional contribu-
tions. While all the authors describe the e − e collisions
in the same way through detailed collision integrals, e− p
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interactions have been described differently. Sun et al. [4]
take into account e−p collisions in the relaxation time ap-
proximation approach, in which a macroscopic relaxation
time of τp = 1 ps is imposed. Del Fatti [5], instead, calcu-
lates e−p interaction through a detailed collision integral,
but using the acoustic deformation potential approach for
the e−p matrix. Rethfeld et al. [10], instead, calculate the
e − p matrix including the electron gas screening effect,
while Groenveld et al. [6] take into account the electron
gas screening in the limit of small-wave-number.

The laser perturbation is considered as a single photon
absorption that induces a transition in the electron energy
space from Ei to Ei + hνlas. Some authors [4,5] consider
all the radiation absorbed by the metal, while, more ac-
curate models calculate an absorption coefficient obtained
by using a resonant dipole transition [7] as well as a dipole
transition mediated by phonon collisions [9,10]. With the
only exception of Rethfeld’s model [10], phonon distribu-
tion is considered a constant Bose-Einstein at the initial
metal temperature.

In the present work, both e − e and e − p collision
processes have been described by detailed collision inte-
grals [11–14]. e−p collision integrals have been calculated
considering the screening of the electron gas and the laser
absorption as been included as in references [4,5].

Theoretical works can be validated by experimen-
tal investigations, such as photoemission spectroscopy
(time-resolved two-photon photoemission experiments,
2PPE) [15–26] and pump-and-probe reflectivity and trans-
missivity measurements [4–6,27–40] performed using fem-
tosecond lasers. This last technique gives hints on nonequi-
librium conditions, but the sensitivity to electron and
phonon distribution details is poor. These experiments
have verified the electron gas non-equilibrium, providing
the e − p coupling constant “g”, used in the TTM ap-
proach, for different materials [27,29].

On the other hand, 2PPE [15–26] directly measure the
electron distributions. Non-equilibrium distributions were
observed for the first time by Fann et al. [15,16] and more
recently by Lisowski et al. [17–19].

2 The model

The theoretical model is based on a simplified metal de-
scription, supposed perfect, homogeneous and isotropic.
The electron conduction band is assumed parabolic and
isotropic and the phonon dispersion relation well de-
scribed by the Debye model [41]. The metal is considered
thicker than the laser pulse absorption depth, so that the
perturbation can be considered spatially homogeneous.
Moreover, energy transport and diffusion effects have been
neglected. Consequently, the model can be considered spa-
tially homogeneous and isotropic, depending only on time
and energy.

The model consists in solving the Boltzmann equation
for electrons and phonons, considering the Fermi-Dirac
and Bose-Einstein statistics, respectively.

The laser pulse is absorbed inducing energy jumps
equal to the photon energy, adding a source term to the
electron Boltzmann equation.

For the electron Boltzmann equation, the contribution
of e − e and e − p collisions is considered, while, for the
phonon Boltzmann equation, only e − p collisions are in-
cluded, neglecting photon-phonon and phonon-phonon in-
teractions.

The system of the two-coupled Boltzmann equations
assumes the following form:
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where f(k, t) and N(q, t) represent the electron and
phonon distribution functions, which, under our assump-
tions, depend only on the modulus of the momentum
k and q, respectively; Φ is the laser absorption source
term, ∂f(k,t)
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ee

the e − e collision integral, ∂f(k,t)
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∣
∣
ep

and

∂N(q,t)
∂t

∣
∣
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ep

the e − p collision integrals for the electron and

the phonon Boltzman equation, respectively.

2.1 Laser perturbation term

In noble metal films, the valence d-bands lie far below
the conduction band. Considering laser photon energy
(hν) lower than the interband transition threshold, the
laser perturbation produces only intraband transition in
the conduction band; laser photons are absorbed directly
by conduction band electrons [3,4] through single-photon
transition

e−(E) + γ(hν) → e−(E + hν). (2)

The electron population derivative in the energy state E is
given by the differences of two terms, one corresponding to
the loss of electrons with energy E excited toward higher
levels and the other to the gain of electrons excited from
lower levels

dfexc(E, t)
dt

= ∆ρ(t) {D(E − hν)f(E − hν) [1 − f(E)]

−D(E + hν)f(E) [1 − f(E + hν)]} (3)

being D(E) the density of states. Equation (3) takes into
account the Pauli exclusion principle by introducing the
term (1 − f). The total number of conduction band elec-
trons, given by

ne =
∫

De(E)f(E, t)dE (4)

must be conserved because of only intraband transitions
are considered and the emitted electrons are neglected.
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The factor ∆ρ (t) is proportional to the injected laser en-
ergy and to the pulse temporal profile and it is calculated
considering the energy conservation:

∆ρ(t) =
uabsλ(t)

∫

ED(E)dfexc(E,t)
dt dE

(5)

being uabs the laser energy density (per unit volume) ab-
sorbed by the metal and λ(t) the pulse temporal shape. Al-
though the perturbed electron distribution is not a Fermi-
Dirac, an equivalent excitation temperature Texc can be
associated, defined as the temperature of a Fermi-Dirac
distribution with the same total energy as the perturbed
distribution.

A crude estimation of Texc can be obtained by the
following approximate formula, based on a Fermi-Dirac
statistics:

uabs =
1
2
c0

(

T 2
exc − T 2

0

) ⇒ Texc =
(

T 2
0 +

2uabs

c0

)1/2

(6)

where c0 is electron specific heat and T0 is the initial equi-
librium temperature.

Calculations have been performed considering regimes
in which the equivalent electron temperature ranges from
few (2–3) to some hundreds (300) Kelvin above the metal
temperature, which correspond to laser energy density ab-
sorbed per unit volume of 105 J/m3 � uabs � 108 J/m3.

Laser absorbed energies must be lower than the dam-
age threshold, to prevent phase transitions and lattice
modification.

2.2 Electron-electron collisions

The interaction among conduction band electrons is a very
complex multiparticle problem, but it can be simplified
by introducing two important concepts, the quasi-particle
and the screening concept [42,43].

To take into account the repulsion due to the other
electrons, each electron could be described as surrounded
by a positive charged cloud, whose effect is to screen out its
electric potential at long distances. In this way, only elec-
trons, which come very close, could interact each other.
Thus, the electron surrounded by the positive charged
cloud behaves as a new particle (quasi-particle), which in-
teracts with the other quasi-particles through a screened
potential. This interaction occurs on a short range and
could be treated as a weak perturbation. The Landau’s
Fermi liquid theory could be then applied [42,43].

In the calculation of electron-electron scattering, only
two-body scattering events have been considered. This ap-
proach of excluding three-body and many-body contribu-
tions will be valid as long as the average inter-particle
spacing is large compared to the scattering radius, i.e.,
at low densities. Moreover, the many-body scatterings are
characterized by a transition probability, which is negligi-
ble with not too strong laser perturbation.

The interaction between two quasi-particles can be
considered as a two-body elastic collision in which total
energy and momentum must be conserved.

In the calculation of e− e collision integrals, only nor-
mal processes in which the momentum conservation oc-
curs in the same cell of the reciprocal lattice will be con-
sidered and both umklapp processes [44,45] and exchange
terms [46,47], which derive from the indistinguibility of
the electrons, have been neglected.

In the first order perturbation theory framework, using
the Fermi’s golden rule, the probability that two electrons
with wavevectors k1, k2 scatter into k3, k4 can be written
as [48,49]:

S(k1,k2;k3,k4) =
2π

�
|Mee|2 δ(k1 + k2−k3 − k4)

× δ(E1+E2−E3−E4)f(k1)f(k2) [1−f(k3)] [1−f(k4)]

(7)

where the momentum and energy conservation condi-
tions appear, together with Pauli’s exclusion principle,
f(k1)f(k2) [1 − f(k3)] [1 − f(k4)], which takes into ac-
count the probability that the k1 and k2 states are oc-
cupied while the k3 and k4 are empty. The term Mee rep-
resents the interaction matrix element, which is calculated
from the e − e interaction Hamiltonian, Hee, through the
following

Mee = Mee(k1,k2;k3,k4) = 〈k3,k4 |Hee|k1,k2〉 . (8)

The electron distribution change rate in the state k1 is
given by the difference between the total scattering rate
into, Γin(k1), and out, Γout(k1), from the state k1, respec-
tively:

df(k1)
dt

∣
∣
∣
∣
ee

=Γin(k1) − Γout(k1)

=
2π

�

∑

k2,k3,k4

|Mee|2 F (k1,k2,k3,k4)

×δ(k1+k2−k3−k4)δ(E1+E2−E3−E4)
(9)

where

F (k1,k2,k3,k4) = − f(k1)f(k2) [1 − f(k3)] [1 − f(k4)]
+ [1 − f(k1)] [1 − f(k2)] f(k3)f(k4).

(10)

The e − e collision integral, given in equation (9), corre-
sponds to the sum over all possible two-body scattering
events in three dimensions, which populate and depopu-
late the state k1.

In the Thomas-Fermi theory approximation of a static
electron screening, the screened Coulomb potential be-
tween any two electrons can be written in the following
form:

Hscreened
ee =

e2

4πε0

1
|r1 − r2| exp [−qs |r1 − r2|] (11)

where e is the electron charge, ε0 the dielectric constant
in void, r1 and r2 the electron positions and qs the screen-
ing parameter. As shown in equation (11), the potential is
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characterized by an exponential damping factor that re-
duces it to a negligible size at distances longer than 1/qs.
The Thomas-Fermi theory screening parameter estimation
(qTF ) is

q2
TF =

e2

ε0

∂n0

∂µ
(12)

where µ is the chemical potential and n0 is the electron
density. For a free electron gas, when T � TF , where TF

is the Fermi temperature, ∂n0
∂µ is simply the density of

levels at the Fermi energy, D(EF ) = mkF

�2π2 , where m is the
electron mass and kF the Fermi vector. Therefore

q2
TF =

e2

ε0
D(EF ) =

e2mkF

ε0�2π2
. (13)

Using this estimation, we obtain a value of qTF of the
order of kF ; i.e., disturbances are screened at a distance,
which is similar to the inter-particle spacing. Thus elec-
trons are highly effective in shielding external charges. The
screening in metals is very strong and e − e interactions
are considerably reduced. Moreover, as we will see, the
e − e scattering rate is very sensible to the value of the
used screening parameter.

The e−e matrix element |Mee|2 can be calculated from
the screening Coulomb potential of equation (11). After
different mathematical rearrangements, this quantity can
be written as

|Mee(q)|2 =
[

e2

ε0V

1
q2 + q2

s

]2

(14)

and depends only on the scattering transferred momentum
q = k1 − k3.

If we pass to the continuous, the sums in equation (9)
over the three possible values of k2, k3, k4 become an inte-
gral over 12 momentum dimensions. Under the hypothesis
of a parabolic and isotropic conduction band (E = �

2k2

2m ),
this integral can be expressed only in terms of electron
energy and easily calculated. If E1, E2, E3 and E4 repre-
sent the electron energies corresponding to the momentum
states k1, k2, k3 and k4, the collision integral for the state
with electron energy E1 and momentum state k1can be re-
duced analytically to a double integral over the electron
energies E2 and E3 [5,48,49]. The final expression for the
e − e collision integral is thus:
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× {f(E3)f(E4) [1 − f(E1)] [1 − f(E2)]

−f(E1)f(E2) [1−f(E3)] [1−f(E4)]}|E4=E1+E2−E3

(15)
where S is a spin factor (=2), ε the dielectric constant,
and qmax and qmin are given by

{

qmax = min {(k2 + k4) ; (k1 + k3)}
qmin = max {|k2 − k4| ; |k1 − k3|} . (16)

As we can see, the collision integral in equation (15) de-
pends on the electron distribution so that e− e scattering
is a non-linear problem.

An estimation of e−e relaxation times can be obtained
through the Fermi-liquid theory (FLT) [41–43]. According
to this theory, an electron of energy E1 near the Fermi sur-
face has a scattering rate 1/τ that depends on its energy
and temperature in the form

1
τee

= a (E1 − EF )2 + b (kBT )2 (17)

where the coefficients a and b are independent of E1 and
T . Thus the electronic lifetime due to e− e scattering can
be made as large as one wishes by going to sufficiently low
temperatures and considering electrons sufficiently close
to the Fermi surface.

For electronic levels i such that (Ei − EF ) � kBT ,
the leading contribution to the scattering rate 1/τee in
equation (17) is the first term. In this case, the distribu-
tion thermal broadening plays no role and τee does not
depend on T . The thermal behaviour of the system pre-
vails for electronic levels for which (Ei − EF ) � kBT . In
this last case, the elementary excitations lie within a layer
of width kBT around the Fermi surface and their τee are
then nearly independent on Ei and proportional to T−2. It
gives qualitative measures of the collision time of a ther-
mal excitation. Equation (17), however, no longer holds
when (Ei − EF ) ≈ EF , thus this estimation of e−e relax-
ation times holds only for electrons not too far from the
Fermi energy.

2.3 Electron-phonon collisions

The e− p interaction consists in phonon emission and ab-
sorption processes by the electron gas. In noble metals,
such as Ag, only acoustic phonons, characterized by one
longitudinal and two transverse modes, are present. As-
suming that these phonon modes are distinct and con-
sidering only normal processes, in which the momentum
conservation occurs in the same reciprocal lattice cell, only
the longitudinal phonon acoustic mode is coupled to the
electron gas [50]. This phonon mode is described by the
Debye dispersion relation.

The phonon emission and absorption scattering pro-
cess rates can be calculated through the Fermi’s golden
rule, in the framework of the first order perturbation the-
ory [51].

The probability that an electron in the state k emits
a phonon with wave number q and energy Eq = �Ωq,
scattering into the state k′ = k − q is given by:

S(k;k′,q) =
2π

�
Ωep(k′,q;k)f(k) [1 − f(k′)]

× (1 + Nq)δ(E(k) − E(k′) − �Ωq) (18)

where Ωep(k′,q;k) = |〈k′,q|Hep |k〉|2 represents the e−p
matrix element, with Hep the e − p interaction pertur-
bation potential; f(k) and Nq represent, respectively,
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the electron and the phonon distribution function, corre-
sponding to k and q wave vector; f(k) [1 − f(k′)] (1+Nq)
is the factor which takes into account the Pauli exclusion
principle, since electron can scatter only into unoccupied
states [1 − f(k′)], and the proportionality of the phonon
emission processes on the factor (1+Nq), since both spon-
taneous and stimulated emission should be included; and
finally δ(E(k) − E(k′) − �Ωq) is the total energy con-
servation condition. In the case of the inverse process of
phonon absorption, the phonon absorption probability is
proportional to Nq instead of (1 + Nq).

The electron distribution change in the state k due to
e − p collisions is given by the sum of two terms repre-
senting the total scattering rate of both phonon emission
and absorption processes, involving transition towards all
the states k′ with k′ = k − q < k and k′ = k + q > k
and considering all the possible phonon wave vectors in
the first Brillouin zone:

df(k)
dt

∣
∣
∣
∣
ep

= Γ−(k) + Γ+(k)

=
2π

�

∑

q

|Mep|2 {f(k′) [1 − f(k)] Nq − f(k) [1 − f(k′)]

×(1 + Nq)} δ(E(k) − E(k′) − �Ωq)

+
2π

�

∑

q

|Mep|2 {f(k′) [1 − f(k)] (1 + Nq) − f(k)

× [1 − f(k′)] Nq} δ(E(k) − E(k′) + �Ωq). (19)

The corresponding phonon distribution changes are:

dN(q)
dt

∣
∣
∣
∣
ep

=
dNq

dt

∣
∣
∣
∣
ep

= 2
2π

�

∑

k

|Mep|2 {f(k) [1 − f(k′)]

×(1+Nq)−f(k′) [1−f(k)]Nq} δ (E(k′)−E(k)−�Ωq) .
(20)

The e − p matrix element can be calculated taking into
account the e−p interaction screening due to the electron
gas, which reduces e − p interaction. In the approxima-
tion of a static screening and in the Thomas-Fermi theory
framework, the e − p interaction matrix can be written:

∣
∣M screen

ep (q)
∣
∣
2 =

1
ε0V

e2

q2 + q2
s

1
2

�Ωq =
e2

�c

2ε0V

q

q2 + q2
s

.

(21)

2.4 Collision integrals conservation properties

In the calculation of e− e and e−p collision integrals, the
following conservation properties must be imposed:

(1) electron density conservation in the electron conduc-
tion band

ne =
∫

De(Ee)f(Ee)dEe = cos t

⇒ dne

dt
=

∫

De(Ee)
df(Ee)

dt
dEe = 0; (22)

(2) total energy density conservation

Etot =
∫

EeDe(Ee)f(Ee)dEe = cos t ⇒ dEtot = 0;

(23)
(3) detailed balance principle, accordingly, at equilibrium,

the probability of a direct process must be equal to
its inverse, in such a way that, for t → ∞, the local
thermodynamic equilibrium is reached.

In Appendix A, more details are given about the way in
which such conservation properties have been imposed.

3 Numerical model

To perform the numerical solution of the two coupled
Boltzmann equation, the electron and phonon energy axes
have been divided into constant energy intervals (Ne and
Np, respectively) and the electron and phonon Boltzmann
equations (Eq. (1)) result in a system of Nt = Ne + Np

coupled, nonlinear differential equations.
Using a matrix representation, this system can be writ-

ten in the following way:

df(t)
dt

= M(f)f

dN(t)
dt

= Ω+(N + 1) − Ω−N (24)

where f and N represent, respectively, the electron and
phonon distributions vectors, while M, Ω+ and Ω− the
matrices which take into account all the discussed pro-
cesses. Let us note that the M matrix depends on the
electron distribution f, while Ω+ and Ω− are indepen-
dent of N.

This system of differential equations has been solved
using the implicit Euler algorithm. In particular, for the
electron distribution

f(t + dt) − f(t)
dt

= M(f(t))f(t + dt) (25)

as a consequence, once the electron distribution f(t) is
known, the electron distribution f(t + dt) at time t + dt is
obtained using

[I − dtM(f(t))] f(t + dt) = f(t). (26)

For the phonon distribution, instead, the following equa-
tion has been used

N(t + dt) − N(t)
dt

= Ω+(N(t) + 1) − Ω−N(t + dt) (27)

thus the solution at time t + dt is obtained from the solu-
tion at time t through

N(t + dt) =
N(t)(1 + dtΩ+) + dtΩ+

1 + dtΩ− . (28)

To improve the stability and the efficiency of this algo-
rithmic, a step-adapting method has been used [52]. This
method has been applied only to the electron Boltzmann
equation, since the electron kinetics is faster and needs
smaller time steps than phonon kinetics.
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4 Results and discussion

Let consider an Ag film subjected to a 20 fs laser pulse
with 1.45 eV photon energy. The total laser energy den-
sity injected is 2.56 × 107 J/m3, which is approximately
equivalent to an instantaneous electron temperature rise of
∆Texc = 500 K. Before irradiation, the metal film is sup-
posed in equilibrium at room temperature (T0 = 300 K),
thus, electrons and phonons are described, respectively,
by a Fermi-Dirac and a Bose-Einstein distribution func-
tion at T0. According to the laser energy injected and to
the electron and phonon heat capacities, the expected fi-
nal equilibrium temperature is TF = 330 K. Both in e− e
and e−p collision integrals, the screening parameter value
of 5.5×109 m−1 has been used. This value has been chosen
in such a way that the resulting e− e relaxation times are
comparable with experimental ones obtained with 2PPE
experiments (see Sect. 4.7).

4.1 Electron distribution changes

Figure 1 shows the temporal evolution of the electron en-
ergy distribution function (eedf) versus electron energy,
near and above the Fermi level EF , (a) during (t � 20 fs)
and (b) after (t > 20 fs) laser perturbation.

As we can see from Figure 1a, the laser perturbation
effect on eedf is to create strong non-equilibrium distribu-
tions characterized by a step shape with the photon energy
periodicity (hνlas = 1.45 eV). The first principal step in
the distribution goes from the Fermi level (EF = 5.49 eV)
up to EF + hνlas = 6.94∼7 eV. This is due to the one-
photon absorption process by the electrons with energies
E in the energy range [EF −hνlas, EF ]. Excited electrons,
in turn, can absorb a further photon, leading to an occupa-
tion number increase for energies up to 2hνlas above EF ,
thus creating the second step and so on. During laser per-
turbation, eedf keeps rising, maintaining the step shape.
Already on fs time scale, e−e collisions start affecting the
distribution by faster smoothing the steps in the eedf dis-
tribution tail. This effect is due to the electron energy re-
distribution, which pushes the eedf toward the equilibrium
Fermi-Dirac distribution. As shown in Section 4.7, e − e
characteristic relaxation times go from few femtoseconds
for electrons far from the Fermi level to some hundreds
of femtoseconds for electrons near the Fermi level. This
explains how, for t � 20 fs, e−e collisions affect especially
higher energy electrons.

After laser perturbation (Fig. 1b), eedf stops rising and
the step shape disappears. From now on, besides e − e
collisions, also the e − p interaction effect starts becom-
ing observable. e − p collisions allow the energy exchange
between the electron and the phonon gas, leading to the
transfer of the electron energy excess, due to the laser per-
turbation, towards the phonon system. As a consequence,
the electron gas cools down and the eedf tends to ap-
proach a Fermi-Dirac distribution at the final equilibrium
temperature TF . This occurs only after 3 ps.

As we can see from Figure 1b, also during the cool-
ing, transient electron distributions differ appreciably by

Fig. 1. Eedf time evolution for an Ag film under a 20 fs laser
pulse with 1.45 eV photon energy and a total laser energy
absorbed of 2.56 × 107 J/m3 (∆Texc = 500 K) (a) during and
(b) after laser perturbation.

equilibrium Fermi-Dirac and an equilibrium temperature
cannot be associated to these distributions. A confirm of
this result can be obtaining by showing that any tem-
perature definition attempts fail in describing the non-
equilibrium electron behaviour. As an example, two differ-
ent temperature definitions have been proposed: the first
one, called Tfit, is obtained by fitting the electron distri-
bution with a Fermi-Dirac distribution, while the second,
called Texc, is defined as the temperature of the Fermi-
Dirac distribution which has the same internal energy of
the non-equilibrium electron distribution. Figure 2 shows
the comparison between the non-equilibrium electron dis-
tribution at the end of the laser pulse (t = 20 fs) and the
Fermi-Dirac distributions at the two calculated tempera-
tures Tfit (332 K) and Texc (797 K) at the same instant.
First of all, we can observe that, Tfit is only few tens of
Kelvin degree higher than the initial equilibrium temper-
ature T0 = 300 K. This is due to the fact that the laser
energy injected is transferred essentially to the eedf tail,
which does not appreciably contribute to the calculation
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Fig. 2. Comparison between the non-equilibrium electron dis-
tribution at the end of the laser perturbation (t = 20 fs) and
the Fermi-Dirac distributions at the two calculated tempera-
tures Tfit = 332 K and Texc = 797 K.

Table 1. Tfit and Texc time evolution, corresponding to the
electron distribution of Figure 1.

time Tfit(K) Texc(K)
1 fs 300.41 346.27
5 fs 303.18 479.39
10 fs 309.38 604.82
20 fs 332.21 797.58
50 fs 421.27 786.16
100 fs 563.19 761.05
500 fs 622.44 564.51
1 ps 440.73 410.66
2 ps 340.83 331.28
3 ps 334.89 330.37

of Tfit. Tfit depends essentially on the population of the
levels close to Fermi energy and it could describe rela-
tively well only the low energy distribution. However, Tfit

strongly underestimates the internal electron energy and
badly describes the non-equilibrium behaviour of the eedf
tail. To correctly describe the real internal electron energy,
we can use Texc, but, as we can see from Figure 2, also
Texc does not succeed to describe the non-equilibrium be-
haviour of the eedf tail. The corresponding Tfit and Texc

time evolution are reported in Table 1. It’s clear that, dur-
ing laser perturbation, Tfit remains more or less near the
initial equilibrium temperature T0 = 300 K, since laser
energy is transferred essentially to the electron distribu-
tion tail, while Texc increases up to the expected value
of 800 K, since its value depends on the internal electron
energy.

After the perturbation, Texc decreases monotonically
due to the e−p energy transfer from electrons to phonons,
while Tfit first increases up to 622 K (t = 500 fs) and then
decreases. The Tfit increase is due to the higher excited
electron relaxation towards lower energies due to e−e col-
lisions. The highest value reached by Tfit (622 K) is, how-

Fig. 3. Time evolution of the phonon distribution logarithmic
for an Ag film under a 20 fs laser pulse with 1.45 eV photon
energy and a total laser energy absorbed of 2.56 × 107 J/m3

(∆Texc = 500 K).

ever, smaller than the electron temperature rise expected
(800 K), since for t = 500 fs, e − p collisions have already
transferred part of the excess electron energy toward the
phonons.

4.2 Phonon distribution changes

Figure 3 reports the simultaneous phonon distribution
time evolution in our test case. Phonon distribution
changes are smaller and slower respect to eedf’s ones. In
the present model, phonons are not directly affected by
laser perturbation, but they fell its effect only indirectly
through the interaction with the electrons. This assump-
tion is validated by the observation that phonon heat ca-
pacity is larger than the electron one, that’s way laser per-
turbation is supposed to be absorbed only by the electron
gas. As the eedf cools down, phonon distribution warms
up and moves slightly and slowly towards the final equi-
librium condition reached at t = 3 ps, attaining exactly
a Bose-Einstein distribution at the final equilibrium tem-
perature TF .

Figure 4, instead, shows the phonon population time
evolution corresponding to some phonon energy states
(Eq/Emax

q = 0.40; 0.60; 0.80; 0.90, where Eq is the
phonon energy corresponding to a wave number q and
Emax

q is the phonon energy corresponding to the max-
imum wave number qmax of the first Brillouin zone).
Phonon population starts increasing after approximately
some hundreds of femtoseconds (t > 100 fs), but phonon
changes become more visible in the picosecond range.

Despite the fact that phonon distribution changes are
much smaller than the electron ones, also phonon distri-
bution passes through non-equilibrium states during its
time evolution.

To prove this, let notice that, at equilibrium,
(

dNq

dt

)

=
0 and, consequently, the following relation holds between
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Table 2. Equilibrium values of the ratio Ω+/Ω− calculated by equation (29) corresponding to the two temperatures T0 and TF .

Eq/Emax
q = 0.005 Eq/Emax

q = 0.50 Eq/Emax
q = 0.99

T0 = 300 K 0.992998399 0.491816819 0.24703649
TF = 333 K 0.993632877 0.524591502 0.280520526

Fig. 4. Phonon population time evolution for different phonon
energy states.

the total phonon emission Ω+ and absorption rate Ω−
(Appendix A)

Ω+

Ω− =
Nq

Nq + 1
= e

− Eq
KTp (29)

where we have used for Nq a Bose-Einstein distribution at
the phonon temperature Tp.

Figure 5 show the time evolution of the ratio Ω+/Ω−
for phonons with energies (a) Eq/Emax

q = 0.005, (b)
Eq/Emax

q = 0.50 and (c) Eq/Emax
q = 0.99. Both at the

beginning and at the end of the time evolution, when the
phonon distribution is at equilibrium at T0 = 300 K and
TF = 333 K, respectively, the values of the ratio Ω+/Ω−
correspond exactly to those predicted by equation (29) at
the two different temperatures. These values are reported
in Table 2. However, in the between of equilibrium states,
the ratio values are very far from equilibrium, showing the
non-equilibrium of the phonon intermediate distributions.

4.3 Electron, phonon and total energy density time
evolution

The internal energy density of the electron gas, ue(t), and
the phonon gas, up(t), can be calculated by integrating
over the corresponding distribution functions, f(E, t) and
Nq(Eq , t), taking into account both the electron and the
phonon density of states, De(E) and Dp(E), respectively:

ue(t) =
∫

dEeDe(Ee)Eef(Ee)

up(t) =
∫

dEqDq(Eq)EqNq(Eq). (30)

Fig. 5. Ω+/Ω− time evolution corresponding to energy phonon
(a) Eq/Emax

q = 0.005, (b) Eq/Emax
q = 0.50 and (c) Eq/Emax

q =
0.99, respectively.

Total energy density utot(t), instead, is given by the sum:

utot(t) = ue(t) + up(t). (31)

Figures 6 and 7 show ue(t), up(t) and utot(t) time evo-
lution, corresponding to the electron and phonon distri-
bution time evolution in Figures 1 and 3. During laser
perturbation (t � 20 fs), ue(t) increases progressively,
while up(t) is nearly unaffected during the pulse. When
the laser is turned off, ue(t) starts decreasing, while up(t)
increases, due to the e−p electron energy transfer towards
the phonons. Stationary ue(t) and up(t) are achieved at
t = 3 ps, when the new equilibrium condition is reached.

As shown in Figure 7, during laser perturbation, utot(t)
increases due the electron energy density increase, but, af-
ter the laser perturbation, it remains constant. This hap-
pens because both e− e and e−p collisions conserve total
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Fig. 6. Electron (ue(t)) and phonon energy (up(t)) density
time evolution corresponding to the electron and phonon dis-
tributions of Figures 1 and 3.

Fig. 7. Total energy density utot(t) = ue(t) + up(t) time evo-
lution corresponding to the electron and phonon distribution
time evolution of Figures 1 and 3.

energy. The total energy density conservation is a good
check of the calculation numerical stability.

Besides the quantities ue(t), up(t) and utot(t), the elec-
tron, phonon and total energy density gain can be also
calculated using

δue(t) = ue(t) − ue(t = 0)
δup(t) = up(t) − up(t = 0)

δutot(t) = utot(t) − utot(t = 0). (32)

Their time evolution is shown in Figure 8. During laser
perturbation, δue increases following the increase of δutot.
The latter, at the pulse end, reaches the expected value
of 2.56 × 107 J/m3, corresponding to the imposed total
laser energy density injected. Moreover, during irradia-
tion, phonon energy is nearly unaffected. Only after irra-
diation, thanks to e−p collisions, the phonon gas is heated
at the same rate as the electron gas is cooled. As a result,
δutot(t) remains constant after the laser perturbation.

Fig. 8. Energy density increase time evolution of the electron
gas, δue(t), the phonon gas, δup(t), and of the total energy,
δutot(t), for the test case considered (Ag, dtlas = 20 fs, hνlas =
1.45 eV, uabs = 2.56 × 107 J/m3 (∆Texc = 500 K)).

4.4 Comparison with TTM

Previous results have shown that the electron distribution
function, after a femtosecond laser pulse excitation, can
remain in non-equilibrium condition for some hundreds of
femtoseconds up to the picosecond time scale. These re-
sults show the inadequacy of the TTM description for the
electron and phonon relaxation dynamics in this temporal
regime.

Two reasons for the TTM inadequacy can be outlined.
The first is that e − e collisions are not fast enough to
thermalize the electron gas before the pulse end. Although
high energies electrons are characterized by e−e relaxation
times of few femtoseconds (see 2PPE results in Sect. 4.7),
electrons near the Fermi level have longer relaxation times
due to available phase space absence.

Moreover, the TTM treats in a separate and sequen-
tial way e − e and e − p collisions. Figures 6 and 8 shows
that when the laser is turned off, already for t > 200 fs,
electron energy starts decreasing while phonon energy in-
creases thanks to e − p collisions. Therefore e − p charac-
teristic times start already at t = 200 fs up to few tens of
picoseconds. As a consequence, e− e and e− p relaxation
times overlap in a substantial temporal range so that sepa-
rate and sequential treatment of the two kinds of collisions
should be avoided.

Another confirm of TTM inadequacy can be obtained
by comparing the e − p cooling behaviour of the laser-
excited electron gas with that of a Fermi-distributed elec-
tron gas with the same internal energy.

Figure 9 shows the corresponding time evolution of
the transient internal excess energy in the following three
cases in which the Ag film, initially in equilibrium at
T0 = 300 K, is subjected to a 100 fs laser pulse with
the following laser energy density injected and excitation
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Fig. 9. Electron energy density increase time evolution δue(t)
(solid lines) for an Ag film subjected to a 100 fs laser pulse,
with hνlas = 1.45 eV and a laser energy injected of (a)
uabs = 2.56 × 107 J/m3; (b) uabs = 1.83 × 108 J/m3; (c)
uabs = 4.08 × 108 J/m3. The dashed lines show the cooling
of the corresponding Fermi-distributed electron gas, which has
the same internal energy at the time in which the laser pertur-
bation is turned off (t = 100 fs).

temperatures:

a) uabs = 2.56 × 107 J/m3, Texc = 800 K
b) uabs = 1.83 × 108 J/m3, Texc = 2000 K
c) uabs = 4.08 × 108 J/m3, Texc = 3000 K.

In the calculations, only e − p collisions have been
considered. In the case of lower injected laser energies
(Figs. 9a, 9b), the laser-heated electron gas cooling rate is
slower than the Fermi-distributed electron gas one. This
e − p relaxation delay compared with the TTM predic-
tion has been also theoretically [10] and experimentally
observed [6,29,36]. Thus, for small injected laser energy,
the non-equilibrium electron distribution slows down e−p
collisions.

However, Figure 9 shows also that by increasing the
injected laser energy, the two cooling behaviours become
closer and closer, up to coincide. This result shows that,
in general, for large laser energy injected, the electron

Fig. 10. (a) Electron distribution and (b) phonon distribution
time evolution for an Ag film subjected to 20 fs laser pulse, with
hνlas = 1.45 eV and with uabs = 6.30×107 J/m3, i.e. ∆Texc =
900 K. The screening parameter used is qs = 5.5 × 109 m−1

and the e − p matrix is given by equation (21).

gas cooling behaviour depends only on the internal en-
ergy ue(t) and not on the particular electron distribution
features. As a result, if sufficiently high laser energy is in-
jected into the metal, the TTM prediction are fairly good
to describe the electron cooling behaviour, also when a
femtosecond laser pulse is used. For an explanation of this
effect, the reader can refer to reference [10].

4.5 Different energy laser density excitations

In this section, the effect of laser energy density increase
on electron and phonon relaxation dynamics is studied.
Figure 10 shows the electron (a) and phonon (b) distri-
bution time evolution in the case in which the Ag film
is subjected to a higher laser energy density of uabs =
6.30 × 107 J/m3 corresponding to ∆Texc = 900 K. The
final equilibrium temperature expected is 381 K.
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Fig. 11. Comparison of the (a) electron energy increase,
δue(t), (b) phonon energy increase, δup(t), and (c) total en-
ergy increase δutot(t) time evolution, in the three excitation
cases considered (∆Texc = 500, 700 and 900 K).

Increasing the laser energy density leads to the increase
of the fraction of electrons, which, from energies lower
than EF , are excited towards upper levels. As a conse-
quence, for energies greater than EF , higher plateaus in
the electron distribution are observed (compare Figs. 1a
and 10a).

Figure 11, instead, shows the comparison of (a) the
electron energy increase, δue(t), (b) the phonon energy
increase, δup(t), and (c) the total energy increase δutot(t),
in three excitation cases corresponding to ∆Texc = 500,
700 and 900 K. As shown in Figure 11, the global re-
laxation time does not change with the increase of laser
energy density.

However, the e − p electron cooling and phonon heat-
ing rate become faster for higher laser excitations (see
Fig. 11). e−p collision rate depends essentially on the dif-
ference between the electron and phonon internal energy

density. The greater the laser energy absorbed by the elec-
tron gas, the higher the difference between the electron
and phonon internal energy density, the faster the e − p
energy transfer.

4.6 Different laser duration pulses

In this section, the role of the laser pulse duration keeping
constant the absorbed energy is studied. Calculations have
been performed in the same condition as in the test case
corresponding to ∆Texc = 500 K, but for different laser
pulse durations dtlas.

Figure 12 shows the electron distribution time evolu-
tion for (a) dtlas = 0 s (instantaneous perturbation), (b)
dtlas = 50 s, (c) dtlas = 400 fs and (d) dtlas = 1 ps. First
of all, the pulse duration has no consequences over the
electron distribution global relaxation times. As a mat-
ter of fact, in all the previous cases, the final equilibrium
condition is reached at t = 3 ps.

However, comparing these figures, we can note that
the electron distribution shape strongly depends on the
laser pulse duration. Moreover, passing from the instan-
taneous excitation to a 1 ps laser pulse, the electron dis-
tribution step shape is washed out and the characteristic
non-equilibrium structure is reduced. This happens be-
cause for longer dtlas, e − e and e − p collision processes
have enough time to affect the distributions and to reduce
the non-equilibrium effects before the laser pulse end.

This is also shown in Figure 13, where we compare the
electron distribution shape corresponding to the perturba-
tion last instant (t = dtlas) with different dtlas. For dtlas of
some ten of femtoseconds (for example, for dtlas = 50 fs),
the laser absorption steps are rounded off essentially by
e− e collisions. This effect is more visible in the distribu-
tion tail, which corresponds to electrons characterized by
shorter e− e relaxation times. For dtlas of some hundreds
of femtoseconds (dtlas > 200 fs), instead, also e − p colli-
sions contribute in reducing the laser absorption steps. As
a consequence, when the laser pulse is turned off, the elec-
tron distribution has been already relaxing towards the
final equilibrium temperature.

These results can justify the use of the TTM in the
description of the electron and phonon relaxation dynamic
when a picosecond laser pulse is used: in this case, the
electron distribution at the laser perturbation end can be
considered more or less “thermalized”.

In Figure 14 the electron, phonon and total energy
density increase time evolution for the cases (a) dtlas =
50 fs, (b) dtlas = 200 fs, (c) dtlas = 400 fs and (d) dtlas =
1 ps are shown. By increasing the laser pulse duration, the
electron energy density increase starts deviating from the
total energy increase, since part of the electron energy is
already transferred to the phonon gas.

Finally, in Figure 15, the electron and phonon energy
time evolution are compared for dtlas in the range [10 fs–
50 fs] (Figs. 15a and 15b) and [100 fs–2 ps] (Figs. 15c
and 15d).

Observing Figures 15a and 15b, after the perturbation,
electron cooling and phonon heating times do not change
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Fig. 12. Electron distribution
time evolution (Ag film, hνlas =
1.45 eV and ∆Texc = 500 K)
corresponding to different laser
pulse durations: (a) instanta-
neous excitation; (b) dtlas =
50 fs; (c) dtlas = 400 fs and (d)
dtlas = 1 ps.

Fig. 13. Electron distribution at the end of laser perturbation
(t = dtlas) for different dtlas.

when dtlas varies in the range [10 fs–50 fs]. On the con-
trary, (Figs. 15c and 15d), for dtlas in the range [100 fs–
2 ps], the longer the laser pulse the slower the electron
cooling and the phonon heating processes.

This phenomenon can be explained by considering that
e− p global collision times depend essentially on the elec-
tron and phonon internal energy density difference. The
greater this difference, the smaller e − p collision times.
By increasing the dtlas in the range [100 fs–2 ps], an in-
creasing laser energy fraction is transferred to the phonon
subsystems due to e − p collisions. As a consequence, the
increase of dtlas in this range results in a smaller difference
between the internal electron and phonon energies.

4.7 Comparison with 2PPE

Time-resolved two-photon photoemission experiments
(2PPE) directly measure both the electron distribution
function relaxation and the e − e relaxation times as a
function of the electron energy.
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Fig. 14. Time evolution of
energy increase for the elec-
tron gas, δue(t), the phonon
gas, δup(t) and the total energy
δutot(t) in the cases (a) dtlas =
50 fs, (b) dtlas = 200 fs, (c)
dtlas = 400 fs and (d) dtlas =
1 ps.

2PPE experiments consist in a pump-and-probe exper-
iments, in which the first pulse excite electrons below the
Fermi level EF towards normally unoccupied states, while
the second pulse photo-ionizes such excited electrons. By
monitoring the number of photoelectrons as a function of
the two pulse time delay and the corresponding kinetic
energy, a direct measure of the electron distribution re-
laxation and of the intermediate state lifetimes can be
determined. When femtosecond laser pulses are used, this
technique is able to measure lifetimes of one or two fem-
toseconds. On this time scale, the measured lifetimes are
due to e − e relaxation times. e − p scattering becomes
important when relaxation times increase beyond some
hundreds of femtoseconds (t > 100 fs). Moreover, since
phonon energies are only few meV for typical metals, the
energy loss due to phonon creation is too small to be re-
solved by energy analyzer commonly used in 2PPE exper-
iments [19].

As an example, in reference [17], 2PPE experiment has
been used to study the non-equilibrium electron and hole
distributions dynamics of bare and D2O covered ruthe-

nium (Ru (001)) following optical excitation (55 fs, 800 nm
pulses) with variable fluence (0.04–0.6 mJcm−2).

These 2PPE spectra show very similar behaviour to
our calculated electron distributions, although the mate-
rial and the laser characteristic considered are different.
As a matter of fact, similar plateaux in the electron range
E − EF = hνlas and similar relaxation dynamics are ob-
served, although different thermalization times occur. In
Ru, the thermalization is faster (500 fs) than noble metals.

In reference [17], 2PPE spectra have been monitored
also changing laser fluence. By increasing laser fluence, an
increase of the non-equilibrium electrons relative number
occurs and higher plateau in the range E−EF = hνlas ap-
pear. This behaviour has been found also in our calculated
distributions (see Sect. 4.5).

Concerning e−e lifetimes of individual excited electron
states, Figure 16 shows the experimental electron state
lifetimes τPE (fs) versus the electron energy E − EF ob-
tained in 2PPE experiments for an Ag film (Refs. [20–22]).
In this picture, the e − e relaxation times theoretical pre-
diction by the Fermi liquid theory (FLT) (see Eq. (17))
is also reported. As clearly shown, characteristic e − e



382 The European Physical Journal D

Fig. 15. Electron ((a) and (c))
and phonon ((b) and (d)) energy
time evolution for different dtlas.
(a) and (b) correspond to the
range [10 fs–50 fs], while (c) and
(d) to the range [100 fs–2 ps].

Fig. 16. Measured lifetimes τPE (fs) versus E − EF in 2PPE
experiments for an Ag film (filled circle [20], filled triangle [21],
open circle [22]) The solid line is calculated from Fermi liquid
theory.

relaxation times go from few femtoseconds for electron lev-
els with (E − EF ) ≈ 3 eV to several tens of femtoseconds
for E − EF less than 1.6 eV up to hundreds of femtosec-
onds for electrons very near to the Fermi level. Moreover,
we note that experimental values calculated for Ag from
references [20–22] give comparable results only for E−EF

greater than 1.6 eV. For E−EF less than 1.6 eV, big differ-
ences are present. This depends on cascade effects, which
make the 2PPE experimental technique less accurate for
energies nearer to the Fermi level. As a matter of fact,
the population of a state may be filled due to the ener-
getic decay of higher excited electrons, thus the measured
lifetimes correspond to those of a cascade instead of be-
ing the individual excited state lifetimes. To minimize the
cascade effect in 2PPE measurements, low excited elec-
tron distribution and thus low laser fluences should be
used (∼0.3 nJ/pulse in [20], for example).

Experimental e−e relaxation times can be very useful
to estimate the screening parameter value qs. e−e collision
integral and thus theoretical e−e relaxation time strongly
depend on qs. By comparing calculated e − e relaxation
times with measured ones, phenomenological values of qs

can be determined.
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Table 3. 2PPE measurement experimental conditions of ref-
erence [20] for an Ag film.

Laser Fluence 0.3 nJ/pulse
Spot size 150 µm

Photon energy 3.3 eV
Penetration depth (at 3.3 eV) 150 Å

Excited volume 3 × 10−10 cm3

Absorption coefficient 10%
Pulse fluence 1.5 µJ/cm2

Fig. 17. Relaxation times τee(E − EF ) vs. E − EF for Ag
corresponding to different values of the screening parameter
qs. The prediction of the FLT is also reported.

Theoretical e − e relaxation times have been obtained
by fitting the eedf(E) slopes versus time with an expo-
nential decay function (exp(−at) + b) in the temporal
range in which the decay occurs. These calculations have
been performed for different screening parameters qs in
the range near the value predicted by the Thomas-Fermi
model (qs = qTF = 8.7 × 109 m−1 for Ag). The laser
perturbation conditions chosen correspond to those used
in 2PPE measurement experimental conditions of refer-
ence [20] (see Tab. 3). According to these values, the im-
posed total energy absorbed by the films was

uabs =
10
100

× 1.5 µJ/cm2

150 × 10−10 m

= 0.1 × 1.5 × 10−2 J/m2

150 × 10−10 m
= 105 J

m3

= 0.1
J

cm3
= 6.24 × 1023 eV

m3
. (33)

These calculations have been performed by considering
only e− e collisions, by neglecting e− p ones and fixing a
constant Bose-Einstein phonon distribution at T = 300 K.
A 20 fs laser pulse has been used. This choice has been
arbitrary, since e − e thermalization times do not depend
on laser pulse duration.

Figure 17 shows the calculated relaxation times
τee(E − EF ) vs. (E − EF ) for Ag for different values of

Fig. 18. Comparison between calculated relaxation times at
different qs values and experimental ones obtained in refer-
ences [20–22].

Fig. 19. Free electron model.
At T = 0 K, only the levels
with E < EF are occupied.

qs (in the range 4.5–8.7 × 109 m−1). In this figure, e − e
relaxation times predicted by the Fermi liquid theory are
also reported. All the curves are characterized by the same
dependence

τ−1
ee ∝ K(E − EF )2 (34)

in line with the result predicted by the Fermi liquid theory
(Eq. (17)). The constant K and thus the absolute values
of τee(E − EF ) depend on the value used for the screen-
ing parameter. In particular, the larger the qs values, the
longer the relaxation.

These calculated e−e relaxation times τee(E−EF ) can
be directly compared to the corresponding experimental
values (see Fig. 18).

As we can see, the screening parameter value qTF over-
estimates the e− e relaxation times. This occurs since the
dynamical phenomenon of e−e screening is described with
the static approximation by the Thomas-Fermi model.
Thus, to have e− e relaxation times comparable to exper-
imental ones, smaller values of the screening parameter
should be used, in particular, in the range 4.5× 109 m−1–
6.5 × 109 m−1. In the presented calculations, an interme-
diate screening parameter value of 5.5×109 m−1 has been
used.

4.8 Photoemitted electron energy distribution

From the conduction band electron energy distribution,
the photoemitted electron energy distribution can be cal-
culated.

According to Figure 19, to escape from the metal,
a free electron should have an energy on the direction
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Fig. 20. Energy distribution function of the photoemitted elec-
trons in the temporal range (a) [0.001–10] fs and (b) [20–500] fs.

normal to the surface larger than ES = Φ + EF , where Φ
is the work function.

Thus, if z is the direction perpendicular to the surface,
the electron should have a momentum pz � p0

z where

(p0
z)

2

2m
= Es. (35)

The photoemitted electron total number can be written
(see Appendix B)

Nemit =
4πm

h3

∫ ∞

ES

(E − Es)f(E)dE (36)

while the photoemitted electron energy distribution is
given by

femit(E) =
4πm

h3
(E − Es)f(E). (37)

As an example, Figures 20a and 20b show the time evolu-
tion of the photoemitted electron distribution in the tem-
poral range (a) [0.001–10] fs and (b) [20–500] fs, in the

Fig. 21. Time evolution of the internal electron distribution
from which the photoemitted electron distribution of Figure 20
has been calculated.

Fig. 22. Energy distribution function of the photoemitted elec-
trons of Figure 20 divided by the square of the electron energy.

case in which the Ag film is submitted to an instanta-
neous laser perturbation with uabs = 4.17062× 108 J/m3

(∆Texc = 2700 K). In the calculation, only e − e colli-
sions have been included. In Figure 21, the corresponding
internal electron energy distribution function is shown.

The internal electron distribution step shape, due to
the laser perturbation, creates some peaks in the pho-
toemitted electron distribution. During the internal elec-
tron relaxation, such peaks are rounded off and when the
internal distribution thermalizes to the Fermi-Dirac dis-
tribution, the photoemitted electron distribution reaches
the Boltzmann one. Figure 22 shows the photoemitted
electron distribution divided by the square of the electron
energy. In this representation, the Boltzmann distribution
is a straight line. Such equilibrium distribution is reached
already at t = 500 fs, i.e. at the same instant at which
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the internal electron distribution thermalized to a Fermi-
Dirac distribution.

The total number of photoemitted electrons in this
conditions is 3.0091 × 1015 m−3, which correspond ap-
proximately to a fraction 10−14 of the conduction band
electrons.

5 Conclusion

The electron and phonon relaxation dynamics in a metal
film subjected to a femtosecond laser pulse have been the-
oretically investigated. For this reason, a numerical solu-
tion of a system of two Boltzmann equations, one for the
electrons and the other for the phonons, has been per-
formed. In the electron Boltzmann equation, the collision
integrals due to electron-electron and electron-phonon col-
lisions and a laser perturbation term have been consid-
ered. In the phonon Boltzmann equation, instead, only
the electron-phonon collision integral has been included.
The theoretical model has been applied to noble metals,
in particular Ag, since their electronic band structure can
be well described by the free electron model.

The results have shown the non-equilibrium behaviour
of both electron and phonon distributions and the main
features of electron and phonon relaxation dynamic af-
ter the femtosecond laser perturbation. Since electron-
electron collisions do not thermalize the electron gas on
a time scale shorter than the laser pulse duration, the
electron distribution is in a strong non-equilibrium condi-
tion and the TTM approach, which describes the electrons
through an equilibrium temperature, cannot be applied.
Only the microscopic kinetic approach based on the solu-
tion of the Boltzmann equation can provide an accurate
description of this phenomenology. Experimental compar-
ison with 2PPE measurements is possible. These exper-
iments provide direct measurements of the electron dis-
tribution relaxation. The comparison shows a qualitative
agreement, confirming of the theoretical model viability.
2PPE experiments give also a measurement of e − e re-
laxation times, which, compared to theoretical ones, can
provide a screening parameter value qs estimation to be
used in theoretical model.

Although the TTM approach is generally inadequate
for electron and phonon relaxation dynamics description
when a femtosecond laser pulse is used, the electron cool-
ing can be well described by the TTM if sufficiently laser
energy is injected into the metal, see also the work of
Rethfeld et al. [10].

Moreover, our theoretical model has shown that, in
general, non-equilibrium electron distributions slow down
e − p energy exchange. This result has been confirmed
also experimentally in references [5,6] through pump-and-
probe reflectivity and transmissivity measurements.

Finally, from the non-equilibrium internal electron
distributions, the energy distribution of the photoemit-
ted electrons has been calculated. The transient non-
equilibrium behaviour of the internal electron distribution
creates some peaks in the photoemitted electron distri-
bution. During the internal electron thermalization, such

peaks are rounded off and the photoemitted electron dis-
tribution is finally driven towards a Boltzmann distribu-
tion, corresponding to a thermalized internal electron dis-
tribution.

Future works should be devoted to the improvement
of the presented theoretical model. First of all, a more
accurate laser absorption model can be developed, taking
into account photon absorption mediated by electron-ion
collisions [9,10]. Moreover, transport effect should be in-
cluded into the model together with a spatial coordinate.
Laser intensity can be increased up to the laser damage
threshold in order to investigate also the ablation condi-
tions. Finally, the effect of non-equilibrium electron dis-
tributions over optical properties such as refraction index
and dielectric constant can be calculated in order to have
direct comparison also with the experimental results of
pump-and-probe measurements.

This work has been partially supported by MIUR PRIN 2005
N. 2005039049 005.

Appendix A: Conservation properties

A.1 Electron density conservation condition

To conserve electron density, the following condition
should be verified (see Eq. (22))

dne

dt
=

∫

De(Ee)
df(Ee)

dt
dEe

=
∫

De(Ee)

[

df(Ee)
dt

∣
∣
∣
∣
ee

+
df(Ee)

dt

∣
∣
∣
∣
ep

]

dEe = 0

(A.1)

thus ⎧

⎪⎪⎪⎨

⎪⎪⎪⎩

∫

De(Ee)
df(Ee)

dt

∣
∣
∣
∣
ee

dEe = 0

∫

De(Ee)
df(Ee)

dt

∣
∣
∣
∣
ep

dEe = 0
. (A.2)

By discretizing the electron energy, equation (A.2) be-
comes ⎧

⎪⎪⎪⎨

⎪⎪⎪⎩

∑

k

Dk
e

dfk

dt

∣
∣
∣
∣
ee

dEk = 0

∑

k

Dk
e

dfk

dt

∣
∣
∣
∣
ep

dEk = 0
. (A.3)

By using the matrix representation form for both the e−e
and e − p collision integrals one obtains:

dfk

dt

∣
∣
∣
∣
ee

=
∑

j

M ee
kj fj,

dfk

dt

∣
∣
∣
∣
ep

=
∑

j

M ep
kj fj . (A.4)

Substituting equation (A.4) in (A.3) and supposing the
electron energy grid uniform (dEk = dE), the electron
density condition becomes:

∑

k

Dk
eM ee

kj = 0,
∑

k

Dk
eM ep

kj = 0. (A.5)
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Thus according to equation (A.5), both e − e and e − p
matrix must be constructed in such a way that, once fixed
a column j, the sum over the corresponding row elements
k, each one multiplied by the density of state Dk

e , must be
zero.

Let focus on e − e collisions and consider a scattering
event in which the involved electrons have the following
energies, E1, E2, E3 and E4 corresponding to the following
indexes k1, k2, k3 and k4 in the electron energy axis.

According to equation (15), the e − e scattering prob-
ability is proportional to the following constant:

Cee =
m5/2

27/2π3�6

Se4

ε2

×
[

q

2q2
s(q2 + q2

s)
+

1
2q2

s

arctan g

(
q

qs

)]∣
∣
∣
∣

qmax

qmin

. (A.6)

Let introduce the following terms:

a1 = Ceef(E2) [1 − f(E3)] [1 − f(E4)]
a2 = Ceef(E1) [1 − f(E3)] [1 − f(E4)]
a3 = Ceef(E4) [1 − f(E1)] [1 − f(E2)]
a4 = Ceef(E3) [1 − f(E1)] [1 − f(E2)] . (A.7)

In the process for which E1, E2 → E3, E4, the matrix ele-
ments M ee

k1k1
and M ee

k2k2
are given by:

M ee
k1k1

= − 1√
E1

a1, M ee
k2k2

= − 1√
E2

a2. (A.8)

The elements M ee
k3k1

, M ee
k4k1

and M ee
k3k2

, M ee
k4k2

can be cal-
culated by imposing the condition (Eq. (A.5)), thus:

Dk1
e M ee

k1k1
+ Dk2

e M ee
k3k1

+ Dk4
e M ee

k4k1
= 0

Dk2
e M ee

k2k2
+ Dk3

e M ee
k3k2

+ Dk4
e M ee

k4k2
= 0. (A.9)

Consequently

M ee
k1k1

= −Dk3
e

Dk1
e

M ee
k3k1

− Dk4
e

Dk1
e

M ee
k4k1

M ee
k2k2

= −Dk3
e

Dk2
e

M ee
k3k2

− Dk4
e

Dk2
e

M ee
k4k2

. (A.10)

Since Dk
e ∝ √

Ek

M ee
k1k1

= −
√

E3√
E1

M ee
k3k1

−
√

E4√
E1

M ee
k4k1

M ee
k2k2

= −
√

E3√
E2

M ee
k3k2

−
√

E4√
E2

M ee
k4k2

. (A.11)

Since the matrix elements M ee
k1k1

and M ee
k2k2

are given by
equation (A.8), the condition (A.11) is true only if we
impose that

M ee
k3k1

=
1
2

1√
E3

a1, M ee
k4k1

=
1
2

1√
E4

a1

M ee
k3k2

=
1
2

1√
E3

a2, M ee
k4k2

=
1
2

1√
E4

a2. (A.12)

If we consider all the scattering events that involve the
states E1, E2, E3 and E4, also the process in which
E3, E4 → E1, E2 should be taken into account. This pro-
cess must be treated in the same way as previous. Thus
we can write:

M ee
k3k3

= − 1√
E3

a3, M ee
k4k4

= − 1√
E4

a4

M ee
k1k3

= − 1
2
√

E1

a3, M ee
k2k3

= − 1
2
√

E2

a3

M ee
k1k4

= − 1
2
√

E1

a4, M ee
k2k4

= − 1
2
√

E2

a4. (A.13)

Finally, using the matrix representation, the direct and
inverse scattering processes E1, E2 ↔ E3, E4 are charac-
terized by the following matrix elements:

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

− 1√
E1

a1 0
1

2
√

E1

a3
1

2
√

E1

a4

0 − 1√
E2

a2
1

2
√

E2

a3
1

2
√

E2

a4

1
2
√

E3

a1
1

2
√

E3

a2 − 1√
E3

a3 0

1
2
√

E4

a1
1

2
√

E4

a2 0 − 1√
E4

a4

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (A.14)

Concerning the e − p interaction, according to equa-
tion (A.5), the e−p matrix must be constructed imposing:

M ep
jj = −

∑

k

Dk
e

Dj
e

M ep
kj , M ep

kk = −
∑

j

Dj
e

Dk
e

M ep
jk . (A.15)

A.2 Detailed balance principle

Concerning e − e collisions, the explicit expression of the
collision integral, in equation (9), has been constructed in
such a way that the detailed balance principle is already
verified.

In the case of e−p collisions, instead, some restrictions
should be imposed. If P (k → j,q) and P (j,q → k) repre-
sent, respectively, the probability of the direct and inverse
process of phonon emission and absorption, which involve
phonons with wave vector q and electrons with wave vec-
tor k and j = k−q, the detailed balance principle imposes
that at equilibrium

P (k → j,q) = P (j,q → k). (A.16)

Since P (k → j,q) and P (j,q → k) can be written in the
following way:

P (k → j,q) = Ωkkfk (1 − fj) (1 + Nq)DqdEq (A.17)
P (j,q → k) = Ωkjfj (1 − fk) NqDqdEq . (A.18)

Imposing equation (A.16) and the Fermi-Dirac and Bose-
Einstein distribution at the same temperature T for the
electron and phonon gas, the following relation between
Ωkk and Ωkj can be deduced:

Ωkk = e
(Ek−Ej−Eq)

KT Ωkj . (A.19)
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This equation, however, is based on the assumption of
a macroscopic equilibrium temperature T and cannot be
used in non-equilibrium conditions. Thus, an alternative
way to impose the detailed balance principle should be
found.

One way could be the definition of a local electron equi-
librium temperature (or punctual temperature) for each
electron energy interval k and the imposition of a local
detailed balancing principle. By fixing a particular kth
interval, the corresponding punctual temperature T punct

k
can be calculated from the kth interval electron distribu-
tion function value fk, imposing a Fermi-Dirac distribu-
tion, i.e.

fk =
1

e
Ek−EF

KT
punct
k + 1

⇒ T punct
k =

1
K

Ek − EF

ln
(

1−fk

fk

) . (A.20)

This calculation could be done only for the electron energy
intervals for which fk = 1. Once defined the kth punc-
tual equilibrium temperature T punct

k , let fix our attention
over one single direct process of phonon emission, in which
electrons in the kth interval emit one phonon with energy
Eq in the qth phonon energy axis interval. Phonon ener-
gies are of the order of meV, thus their maximum value
(Emax

q ) is, generally, less than the electron energy interval

width dEe

(
Emax

q

dEe
< 1

)

. As a consequence, kth electrons
will move toward jth = (k − 1)th interval. If Ek repre-
sents the electron energy corresponding to the kth interval
centre, after a phonon emission process, only electrons in
the energy range [E1, E2] =

[

Ek − dEe

2 , Ek − dEe

2 + Eq

]

will change interval, giving a nonzero transition proba-
bility contribution. These electrons will move into jth =
(k − 1)th energy range, in particular, in the interval
[E3, E1] =

[

Ej + dEe

2 − Eq, Ej + dEe

2 = Ek − dEe

2

]

.
Symmetrically, for the absorption inverse process,

there will be a nonzero contribution only for electrons of
the jth = (k − 1)th interval with energies in the range
[E3, E1], which will move to kth interval energy range of
[E1, E2].

The total emission and absorption probability, which
involve the kth and the jth intervals are proportional to
the following integrals:

(a) emission

P (k → j,q) = Ωkk
1

dE

E2∫

E1

fs (1 − fz) (1 + Nq)DqdE

(A.21)

(b) absorption

P (j,q → k) = Ωkj
1

dE

E1∫

E3

fz (1 − fs)NqDqdE (A.22)

where fs and fz represent the electron distribution cor-
responding to the energy Es ∈ [E1, E2] and Ez ∈

[E3, E1]. Using the average theorem, the integrals in equa-
tions (A.21) and (A.22) can be approximated by:

P (k → j,q) ≈ Ωkkfs̄ (1 − fz̄) (1 + Nq)Dq
Eq

dE
(A.23)

P (j,q → k) ≈ Ωkjfz̄ (1 − fs̄) NqDq
Eq

dE
(A.24)

where fs̄, fz̄ represent the electron distributions corre-
sponding to the average energy values Es̄, Ez̄ of the [E1,
E2] and [E3, E1] intervals, respectively. For an estimation
of the fs̄, fz̄ values, we can use Fermi-Dirac distributions
with the punctual electron temperature of the intervals
in which Es̄, Ez̄ fall. Thus, if Tk and Tj are the punctual
electron temperatures of the kth and the jth intervals,
respectively, fs̄, fz̄ are:

fs̄ =
1

e
Es̄−EF

KTk + 1
, fz̄ =

1

e
Ez̄−EF

KTj + 1
. (A.25)

According equation (A.16)

Ωkkfs̄ (1 − fz̄) (1 + Nq) = Ωkjfz̄ (1 − fs̄)Nq

⇒ Ωkk =
fz̄ (1 − fs̄)Nq

fs̄ (1 − fz̄) (1 + Nq)
Ωkj . (A.26)

If we substitute the fs̄, fz̄ expressions given by equa-
tion (A.25) into equation (A.26) and if we suppose that
the phonon distribution Nq is characterized by a Bose-
Einstein distribution at a temperature Tp, we have that
equation (A.26) now becomes:

Ωkk = e
Ez̄−EF

kTj e
Es̄−EF

kTk e
− Ep

kTp Ωkj . (A.27)

Using equations (A.23), (A.24) and (A.27), in the calcula-
tion of each emission and absorption probability, the de-
tailed balance principle will be locally and, consequently,
also globally valid.

A.3 Total energy conservation condition

Concerning e−e collision integral, it can be simply proved
that the e − e matrix constructed according (A.14) con-
serves total electron energy as well. In particular, that for
each j the following condition holds:

∑

k

EkDkM ee
kj = 0. (A.28)

Concerning e − p collision integral, instead, the total en-
ergy conservation condition must be imposed. To this pur-
pose, e − p phonon distribution changes have been calcu-
lated from the e − p electron distribution changes using
total energy conservation condition. If ∆Ee represents the
electron energy change due to e−p processes which involve
phonons with q momentum, and ∆Eq the corresponding
phonon energy change, according to the total energy con-
servation condition

∆Eq = −∆Ee. (A.29)



388 The European Physical Journal D

Since

∆Ee =
∑

k

EkDe
k

dfk

dt

∣
∣
∣
∣
ep

dEk (A.30)

and

∆Eq = EqDq
dNq

dt

∣
∣
∣
∣
ep

dEq. (A.31)

The phonon distribution change must be calculated from
the electron distribution changes through

dNq

dt

∣
∣
∣
∣
ep

= − ∆Ee

EqDqdEq
. (A.32)

In particular, by considering the phonon emission and ab-
sorption processes, which involve only electrons from kth
and jth (j = k − 1, j < k) intervals and phonons with
energy Eq, after different mathematical passages, one ob-
tain

dNq

dt

∣
∣
∣
∣
ep

= Ω+(Nq + 1) − Ω−Nq (A.33)

with

Ω+ = CepdEefs̄ (1 − fz̄)

Ω− = CepdEefz̄ (1 − fs̄) (A.34)

where, Ω+ and Ω− represents the phonon emission and
absorption total rate, respectively, and

Cep = Dk
eΩkk = Dk

eΩkj . (A.35)

Appendix B: Photoemitted electrons

If vz and pz are, respectively, the electron velocity and
momentum in the z-direction, perpendicular to metal sur-
face and n(pz)dpz the number of electrons per unit volume
with momentum between pz and pz + dpz, the electrons
which arrives to the surface per unit time and unit surface
is given by vzn(pz)dpz .

In the hypothesis of an isotropic electron distribution,
the number of possible states, per unit volume, in the
element dpxdpydpz of the momentum space is given by:

2dpxdpydpz

h3
. (B.1)

Thus the number of electrons with momentum between
px, px + dpx; py, py + dpy; pz, pz + dpz is

n(px, py, pz)dpxdpydpz =
2
h3

f(E)dpxdpydpz (B.2)

where f(E) represents the electron energy distribution

function with E =
p2

x+p2
y+p2

z

2m .
Thus, the total number of electrons emitted by the

surface is:

Nemit =
∫ ∞

p0
z

∫ +∞

−∞

∫ +∞

−∞

pz

m
n(px, py, pz)dpxdpydpz

=
2

mh3

∫ ∞

p0
z

∫ +∞

−∞

∫ +∞

−∞
pzf(E)dpxdpydpz. (B.3)

Let us consider the following quantities p⊥ = pz, p‖ =
√

p2
x + p2

y, E⊥ = p2
⊥

2m , E‖ =
p2
‖

2m and E = E⊥ + E‖. The
double integral over the x and y momentum components
can be calculated in the following way:

∫ +∞

−∞

∫ +∞

−∞
dpxdpy =

∫ ∞

0

p‖dp‖

∫ 2π

0

dϕ=2π

∫ ∞

0

p‖dp‖.

(B.4)
Thus equation (B.3) becomes

Nemit =
4π

mh3

∫ ∞

p0
z

∫ ∞

0

p⊥p‖f(E)dp⊥dp‖. (B.5)

Since, p⊥ = p cosϑ and p‖ = p sin ϑ

Nemit =
4π

mh3

∫ ∞

p0
z

f(E)p3dp

∫ ϑmax

0

cosϑ sin ϑdϑ (B.6)

where ϑmax = ar cos p0
z

p . Thus,

∫ ϑmax

0

cosϑ sin ϑdϑ =
1
2

(
p2 − (p0

z)2

p2

)

(B.7)

substituting equation (B.7) into equation (B.6)

Nemit =
4π

mh3

1
2

∫ ∞

p0
z

p3 p2 − (p0
z)

2

p2
f(E)dp

=
2π

mh3

∫ ∞

p0
z

p
(

p2 − (p0
z)

2
)

f(E)dp. (B.8)

In terms of electron energy, equation (B.8) becomes

Nemit =
4πm

h3

∫ ∞

ES

(E − Es)f(E)dE. (B.9)

References

1. A. Bogaerts, Z. Chen, R. Gijbels, A. Vertes, Spectrochim.
Acta B 58, 1867 (2003)

2. S.I. Anisimov, A.M. Bonch-Bruevich, M.A. El’yashevich,
Ya. A. Imas, N.A. Pavlenko, G.R. Romanov, Zh. Tekh. Fiz.
36, 1273 (1966) [Sov. Phys. Tech. Phys. 11, 945 (1967)]

3. S.I. Anisimov, B.L. Kapeliovitch, T.L. Perel’man, Zh.
Eksp. Teor. Fiz. 66, 776 (1974) [Sov. Phys. JETP 39, 375
(1974)]

4. C.K. Sun, F. Vallée, L.H. Acioli, E.P. Ippen, J.G. Fujimoto,
Phys. Rev. B 48, 12365 (1993)

5. N. Del Fatti, C. Voisin, M. Achermann, S. Tzortzakis, D.
Christofilos, F. Vallée, Phys. Rev. B 61, 16956 (2000)

6. R.H.M. Groeneveld, R. Sprik, Phys. Rev. B 45, 5079
(1992)

7. D. Bejan, R. Raseev, Phys. Rev. B 55, 4250 (1997)
8. V.E. Gusev, O.B. Wright, Phy. Rev. B 57, 2878 (1998)
9. A.V. Lugovskoy, I. Bray, Phys. Rev. B 60, 3279 (1999)

10. B. Rethfeld, A. Kaiser, M. Vicanek, G. Simon, Phys. Rev.
B 65, 214303 (2002)

11. S. Longo, L.D. Pietanza, F.A. Tassielli, M. Capitelli, Laser,
Particle Beams 20, 285 (2002)



L.D. Pietanza et al.: Non-equilibrium electron and phonon dynamics in metals 389

12. L.D. Pietanza, G. Colonna, S. Longo, M. Capitelli, Thin
Solid Film 453, 512 (2004)

13. L.D. Pietanza, G. Colonna, S. Longo, M. Capitelli, Appl.
Phys. A 79, 1047 (2004)

14. L.D. Pietanza, G. Colonna, M. Capitelli, Appl. Surf. Sci.
248, 103 (2005)

15. W.S. Fann, R. Storz, H.K. Tom, J. Bokor, Phys. Rev. Lett.
68, 2834 (1992)

16. W.S. Fann, R. Storz, H.K. Tom, J. Bokor, Phys. Rev. B
46, 13592 (1992)

17. M. Lisowski, P.A. Loukakos, U. Bovensiepen, J. Stahler,
C. Gahl, M. Wolf, Appl. Phys. A 78, 165 (2004)

18. M. Lisowski, P.A. Loukakos, U. Bovensiepen, M. Wolf,
Appl. Phys. A 79, 739 (2004)

19. M. Lisowski, P.A. Loukakos, M. Melnikov, I. Radu, L.
Ungureanu, M. Wolf, U. Bovensiepen, Phys. Rev. Lett.
95, 137402 (2005)

20. M. Aeschlimann, M. Bauer, S. Pawlik, Chem. Phys. 205,
127 (1996)

21. M. Aeschlimann, M. Bauer, S. Pawlik, W. Weber, R.
Burgermeister, D. Oberli, H.C. Siegmann, Phys. Rev. Lett.
79, 5158 (1997)

22. M. Wolf, M. Aeschlimann, Phys. B1 54, 145 (1998)
23. M. Bauer, M. Aeschlimann, J. Electron Spectr. Rel.

Phenom. 124, 225 (2002)
24. S.Ogawa, H. Nagano, H. Petek, Phys. Rev. B 55, 10869

(1997)
25. E. Knoesel, A. Hotzel, M. Wolf, Phys. Rev. B 57, 12812

(1998)
26. J. Cao, Y. Gao, H.E. Elayed-Ali, R.J.D. Miller, D.A.

Mantell, Phys. Rev. B 58, 10948 (1998)
27. M. Bonn, D.N. Denzel, S. Funk, M. Wolf, S.-S. Wellershoff,

J. Hohlfeld, Phys. Rev. B 61, 1101 (2000)
28. C.K. Sun, F. Vallée, L.H. Acioli, E.P. Ippen, J.G. Fujimoto,

Phys. Rev. B 50, 15337 (1994)
29. R.H.M. Groeneveld, R. Sprik, A. Lagendijk, Phys. Rev. B

51, 11433 (1995)
30. R.W. Schoenlein, W.Z. Lin, J.G. Fujimoto, G.L. Eesley,

Phys. Rev. Lett. 58, 1680 (1987)

31. H.E. Elsayed-Ali, T.B. Norris, M.A. Pessot, G.A. Mourou,
Phys. Rev. Lett. 58, 1212 (1987)

32. H.E. Elsayed-Ali, T. Juhasz, G.O. Smith, W.E. Bron,
Phys. Rev. B 43, 4488 (1990)

33. S.D. Brorson, A.Kazeroonian, J.S. Modera, D.W. Face,
T.K. Cheng, E.P. Ippen, M.S. Dresselhaus, G. Dresselhaus,
Phys. Rev. Lett. 64, 2172 (1990)

34. S.D. Brorson, J.G. Fujimoto, E.P. Ippen, Phys. Rev. Lett.
59, 1962 (1987)

35. C. Suarez, W.E. Bron, T. Juhasz, Phys. Rev. Lett. 75,
4536 (1995)

36. N. Del Fatti, R. Bouffanais, F. Vallée, C. Flytzanis, Phy.
Rev. Lett. 81, 922 (1998)

37. R. Rosei, D.W. Lynch, Phys. Rev. B 5, 3883 (1972)
38. R. Rosei, Phys. Rev. B 10, 474 (1974)
39. R. Rosei, C.H. Culp, J.H. Weaver, Phys. Rev. B 10, 484

(1974)
40. R. Rosei, F. Antonangeli, U.M. Grassano, Surf. Sci. 37,

689 (1973)
41. N.W. Ashcroft, N.D. Mermin, Solid State Physics (Holt

Saunders International Editions, 1976)
42. D. Pines, Elementary excitations in solids (W.A. Benjamin

Inc., New York, 1963)
43. D. Pines, P. Nozières, W.A. Benjamin Inc., New York

(1966)
44. S.L. Adler, Phys. Rev. 130, 1654 (1963)
45. W.E. Lawrence, Phys. Rev. B 13, 5316 (1976)
46. D.R. Penn, Phys. Rev. B 22, 2677 (1980)
47. J.H. Collet, Phys. Rev. B 47, 10279 (1993)
48. D.W. Snoke, W.W. Ruhle, Y.C. Lu, E. Bauser, Phys. B

45, 10979 (1992)
49. D.W. Snoke, J.P. Wolfe, Phys. Rev. B 39, 4030 (1989)
50. J.M.Ziman, Electrons and phonons (Clarendon Press,

Oxford, 1960)
51. P.B. Allen, Phys. Rev. Lett. 59, 1460 (1987)
52. G. Colonna, Suppl. Rend. Circ. Mat. Palermo II 57, 159

(1998)


